The Discriminative Kalman Filter for Bayesian Filtering with Nonlinear and Nongaussian Observation Models

Author:

Burkhart Michael C.1,Brandman David M.2,Franco Brian3,Hochberg Leigh R.4,Harrison Matthew T.5

Affiliation:

1. Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A. michael_burkhart@alumni.brown.edu

2. Department of Neuroscience, Brown University, Providence, RI 02912, U.S.A., and Department of Surgery (Neurosurgery), Dalhousie University, Halifax, NS, B3H 4R2, Canada david_brandman@alumni.brown.edu

3. Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA 02114, U.S.A. brfranco34@gmail.com

4. Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA 02114, U.S.A.; School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI 02912, U.S.A.; Neurology, Harvard Medical School, Boston, MA 02115, U.S.A.; and VA RR&D Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Medical Center, Providen

5. Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A. matthew_harrison@brown.edu

Abstract

Abstract The Kalman filter provides a simple and efficient algorithm to compute the posterior distribution for state-space models where both the latent state and measurement models are linear and gaussian. Extensions to the Kalman filter, including the extended and unscented Kalman filters, incorporate linearizations for models where the observation model p(observation|state) is nonlinear. We argue that in many cases, a model for p(state|observation) proves both easier to learn and more accurate for latent state estimation. Approximating p(state|observation) as gaussian leads to a new filtering algorithm, the discriminative Kalman filter (DKF), which can perform well even when p(observation|state) is highly nonlinear and/or nongaussian. The approximation, motivated by the Bernstein–von Mises theorem, improves as the dimensionality of the observations increases. The DKF has computational complexity similar to the Kalman filter, allowing it in some cases to perform much faster than particle filters with similar precision, while better accounting for nonlinear and nongaussian observation models than Kalman-based extensions. When the observation model must be learned from training data prior to filtering, off-the-shelf nonlinear and nonparametric regression techniques can provide a gaussian model for p(observation|state) that cleanly integrates with the DKF. As part of the BrainGate2 clinical trial, we successfully implemented gaussian process regression with the DKF framework in a brain-computer interface to provide real-time, closed-loop cursor control to a person with a complete spinal cord injury. In this letter, we explore the theory underlying the DKF, exhibit some illustrative examples, and outline potential extensions.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3