Neural Decoding: A Predictive Viewpoint

Author:

Todorova Sonia1,Ventura Valérie2

Affiliation:

1. Deceased

2. Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, and Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, U.S.A.

Abstract

Decoding in the context of brain-machine interface is a prediction problem, with the aim of retrieving the most accurate kinematic predictions attainable from the available neural signals. While selecting models that reduce the prediction error is done to various degrees, decoding has not received the attention that the fields of statistics and machine learning have lavished on the prediction problem in the past two decades. Here, we take a more systematic approach to the decoding prediction problem and search for risk-optimized reverse regression, optimal linear estimation (OLE), and Kalman filter models within a large model space composed of several nonlinear transformations of neural spike counts at multiple temporal lags. The reverse regression decoding framework is a standard prediction problem, where penalized methods such as ridge regression or Lasso are routinely used to find minimum risk models. We argue that minimum risk reverse regression is always more efficient than OLE and also happens to be 44% more efficient than a standard Kalman filter in a particular application of offline reconstruction of arm reaches of a rhesus macaque monkey. Yet model selection for tuning curves–based decoding models such as OLE and Kalman filtering is not a standard statistical prediction problem, and no efficient method exists to identify minimum risk models. We apply several methods to build low-risk models and show that in our application, a Kalman filter that includes multiple carefully chosen observation equations per neural unit is 67% more efficient than a standard Kalman filter, but with the drawback that finding such a model is computationally very costly.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3