Online Mental Fatigue Monitoring via Indirect Brain Dynamics Evaluation

Author:

Pan Yuangang1,Tsang Ivor W.2,Lyu Yueming3,Singh Avinash K.4,Lin Chin-Teng5

Affiliation:

1. Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, NSW 2007, Australia yuangang.pan@uts.edu.au

2. Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, NSW 2007, Australia ivor.tsang@uts.edu.au

3. Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, NSW 2007, Australia Yueming.Lyu@student.uts.edu.au

4. Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, NSW 2007, Australia Avinash.Singh@uts.edu.au

5. Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, NSW 2007, Australia Chin-teng.Lin@uts.edu.au

Abstract

Driver mental fatigue leads to thousands of traffic accidents. The increasing quality and availability of low-cost electroencephalogram (EEG) systems offer possibilities for practical fatigue monitoring. However, non-data-driven methods, designed for practical, complex situations, usually rely on handcrafted data statistics of EEG signals. To reduce human involvement, we introduce a data-driven methodology for online mental fatigue detection: self-weight ordinal regression (SWORE). Reaction time (RT), referring to the length of time people take to react to an emergency, is widely considered an objective behavioral measure for mental fatigue state. Since regression methods are sensitive to extreme RTs, we propose an indirect RT estimation based on preferences to explore the relationship between EEG and RT, which generalizes to any scenario when an objective fatigue indicator is available. In particular, SWORE evaluates the noisy EEG signals from multiple channels in terms of two states: shaking state and steady state. Modeling the shaking state can discriminate the reliable channels from the uninformative ones, while modeling the steady state can suppress the task-nonrelevant fluctuation within each channel. In addition, an online generalized Bayesian moment matching (online GBMM) algorithm is proposed to online-calibrate SWORE efficiently per participant. Experimental results with 40 participants show that SWORE can maximally achieve consistent with RT, demonstrating the feasibility and adaptability of our proposed framework in practical mental fatigue estimation.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3