Efficient Blind Dereverberation and Echo Cancellation Based on Independent Component Analysis for Actual Acoustic Signals

Author:

Takeda Ryu1,Nakadai Kazuhiro2,Takahashi Toru1,Komatani Kazunori3,Ogata Tetsuya1,Okuno Hiroshi G.1

Affiliation:

1. Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

2. Honda Research Institute Japan Co., Wako, Saitama 351-0188, Japan

3. Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

Abstract

This letter presents a new algorithm for blind dereverberation and echo cancellation based on independent component analysis (ICA) for actual acoustic signals. We focus on frequency domain ICA (FD-ICA) because its computational cost and speed of learning convergence are sufficiently reasonable for practical applications such as hands-free speech recognition. In applying conventional FD-ICA as a preprocessing of automatic speech recognition in noisy environments, one of the most critical problems is how to cope with reverberations. To extract a clean signal from the reverberant observation, we model the separation process in the short-time Fourier transform domain and apply the multiple input/output inverse-filtering theorem (MINT) to the FD-ICA separation model. A naive implementation of this method is computationally expensive, because its time complexity is the second order of reverberation time. Therefore, the main issue in dereverberation is to reduce the high computational cost of ICA. In this letter, we reduce the computational complexity to the linear order of the reverberation time by using two techniques: (1) a separation model based on the independence of delayed observed signals with MINT and (2) spatial sphering for preprocessing. Experiments show that the computational cost grows in proportion to the linear order of the reverberation time and that our method improves the word correctness of automatic speech recognition by 10 to 20 points in a RT20= 670 ms reverberant environment.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3