Tensor Representation of Topographically Organized Semantic Spaces

Author:

Pomi Andrés1,Mizraji Eduardo1,Lin Juan2

Affiliation:

1. Group of Cognitive Systems Modeling. Biophysics Section, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay

2. Group of Cognitive Systems Modeling, Biophysics Section, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay, and Physics Department, Washington College, Chestertown, MD 21620, U.S.A.

Abstract

Human brains seem to represent categories of objects and actions as locations in a continuous semantic space across the cortical surface that reflects the similarity among categories. This vision of the semantic organization of information in the brain, suggested by recent experimental findings, is in harmony with the well-known topographically organized somatotopic, retinotopic, and tonotopic maps in the cerebral cortex. Here we show that these topographies can be operationally represented with context-dependent associative memories. In these models, the input vectors and, eventually also, the associated output vectors are multiplied by context vectors via the Kronecker tensor product, which allows a spatial organization of memories. Input and output tensor contexts localize matrices of semantic categories into a neural layer or slice and, at the same time, direct the flow of information arriving at the layer to a specific address, and then forward the output information toward the corresponding targets. Given a neural topographic pattern, the tensor representation will place a set of associative matrix memories within a topographic regionalized host matrix in such way that they reproduce the empirical pattern of patches in the actual neural layer. Progressive approximations to this goal are accomplished by avoiding excessive overlap of memories or the existence of empty regions within the host matrix.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3