Heuristic Tree-Partition-Based Parallel Method for Biophysically Detailed Neuron Simulation

Author:

Zhang Yichen1,Du Kai2,Huang Tiejun3

Affiliation:

1. School of Computer Science, Peking University, Beijing 100871, China zhang-yc16@pku.edu.cn

2. School of Computer Science and Institute for Artificial Intelligence, Peking University, Beijing 100871, China kai.du@pku.edu.cn

3. School of Computer Science and Institute for Artificial Intelligence, Peking University, Beijing 100871, China tjhuang@pku.edu.cn

Abstract

Abstract Biophysically detailed neuron simulation is a powerful tool to explore the mechanisms behind biological experiments and bridge the gap between various scales in neuroscience research. However, the extremely high computational complexity of detailed neuron simulation restricts the modeling and exploration of detailed network models. The bottleneck is solving the system of linear equations. To accelerate detailed simulation, we propose a heuristic tree-partition-based parallel method (HTP) to parallelize the computation of the Hines algorithm, the kernel for solving linear equations, and leverage the strong parallel capability of the graphic processing unit (GPU) to achieve further speedup. We formulate the problem of how to get a fine parallel process as a tree-partition problem. Next, we present a heuristic partition algorithm to obtain an effective partition to efficiently parallelize the equation-solving process in detailed simulation. With further optimization on GPU, our HTP method achieves 2.2 to 8.5 folds speedup compared to the state-of-the-art GPU method and 36 to 660 folds speedup compared to the typical Hines algorithm.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3