Invariant Object Recognition and Pose Estimation with Slow Feature Analysis

Author:

Franzius Mathias1,Wilbert Niko2,Wiskott Laurenz3

Affiliation:

1. Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany, and Honda Research Institute Europe GmbH, Offenbach-Main, 63073, Germany

2. Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany

3. Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany, and Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany

Abstract

Primates are very good at recognizing objects independent of viewing angle or retinal position, and they outperform existing computer vision systems by far. But invariant object recognition is only one prerequisite for successful interaction with the environment. An animal also needs to assess an object's position and relative rotational angle. We propose here a model that is able to extract object identity, position, and rotation angles. We demonstrate the model behavior on complex three-dimensional objects under translation and rotation in depth on a homogeneous background. A similar model has previously been shown to extract hippocampal spatial codes from quasi-natural videos. The framework for mathematical analysis of this earlier application carries over to the scenario of invariant object recognition. Thus, the simulation results can be explained analytically even for the complex high-dimensional data we employed.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Supervised Learning of Color Constancy;2024 IEEE International Conference on Development and Learning (ICDL);2024-05-20

2. Learning Object Semantic Similarity with Self-Supervision;2024 IEEE International Conference on Development and Learning (ICDL);2024-05-20

3. Unsupervised learning of mid-level visual representations;Current Opinion in Neurobiology;2024-02

4. Caregiver Talk Shapes Toddler Vision: A Computational Study of Dyadic Play;2023 IEEE International Conference on Development and Learning (ICDL);2023-11-09

5. Autoencoding slow representations for semi-supervised data-efficient regression;Machine Learning;2023-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3