Dynamic Computational Model of the Human Spinal Cord Connectome

Author:

Arle Jeffrey E.1,Iftimia Nicolae2,Shils Jay L.3,Mei Longzhi4,Carlson Kristen W.4

Affiliation:

1. Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215; Department of Neurosurgery, Harvard Medical School, Boston, MA 02115; and Department of Neurosurgery, Mt. Auburn Hospital, Cambridge, MA 02138, U.S.A.

2. Molecular Pathology Department, Massachusetts General Hospital, Charlestown, MA 02114, U.S.A.

3. Department of Anesthesiology, Rush Medical Center, Chicago, IL 60612, U.S.A.

4. Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, U.S.A.

Abstract

Connectomes abound, but few for the human spinal cord. Using anatomical data in the literature, we constructed a draft connectivity map of the human spinal cord connectome, providing a template for the many calibrations of specialized behavior to be overlaid on it and the basis for an initial computational model. A thorough literature review gleaned cell types, connectivity, and connection strength indications. Where human data were not available, we selected species that have been studied. Cadaveric spinal cord measurements, cross-sectional histology images, and cytoarchitectural data regarding cell size and density served as the starting point for estimating numbers of neurons. Simulations were run using neural circuitry simulation software. The model contains the neural circuitry in all ten Rexed laminae with intralaminar, interlaminar, and intersegmental connections, as well as ascending and descending brain connections and estimated neuron counts for various cell types in every lamina of all 31 segments. We noted the presence of highly interconnected complex networks exhibiting several orders of recurrence. The model was used to perform a detailed study of spinal cord stimulation for analgesia. This model is a starting point for workers to develop and test hypotheses across an array of biomedical applications focused on the spinal cord. Each such model requires additional calibrations to constrain its output to verifiable predictions. Future work will include simulating additional segments and expanding the research uses of the model.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic rule-based generation of spinal cord connectome model for a neuro-musculoskeletal limb in-silico;IOP SciNotes;2022-03-01

2. Preliminary study of analgesic effect of bumetanide on neuropathic pain in patients with spinal cord injury;Journal of Clinical Neuroscience;2020-11

3. Functional Requirements of Small- and Large-Scale Neural Circuitry Connectome Models;Brain and Human Body Modeling 2020;2020-08-06

4. Robustness in Neural Circuits;Brain and Human Body Modeling 2020;2020-08-06

5. Motor Evoked Potentials;Principles of Neurophysiological Assessment, Mapping, and Monitoring;2019-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3