Internal-Time Temporal Difference Model for Neural Value-Based Decision Making

Author:

Nakahara Hiroyuki1,Kaveri Sivaramakrishnan1

Affiliation:

1. Laboratory for Integrated Theoretical Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, 351-0198 Japan, and Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan

Abstract

The temporal difference (TD) learning framework is a major paradigm for understanding value-based decision making and related neural activities (e.g., dopamine activity). The representation of time in neural processes modeled by a TD framework, however, is poorly understood. To address this issue, we propose a TD formulation that separates the time of the operator (neural valuation processes), which we refer to as internal time, from the time of the observer (experiment), which we refer to as conventional time. We provide the formulation and theoretical characteristics of this TD model based on internal time, called internal-time TD, and explore the possible consequences of the use of this model in neural value-based decision making. Due to the separation of the two times, internal-time TD computations, such as TD error, are expressed differently, depending on both the time frame and time unit. We examine this operator-observer problem in relation to the time representation used in previous TD models. An internal time TD value function exhibits the co-appearance of exponential and hyperbolic discounting at different delays in intertemporal choice tasks. We further examine the effects of internal time noise on TD error, the dynamic construction of internal time, and the modulation of internal time with the internal time hypothesis of serotonin function. We also relate the internal TD formulation to research on interval timing and subjective time.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3