Hidden Quantum Processes, Quantum Ion Channels, and 1/fθ-Type Noise

Author:

Paris Alan1,Vosoughi Azadeh2,Berman Stephen A.3,Atia George2

Affiliation:

1. NeuroLogic Laboratory, Institute for Simulation and Training, University of Central Florida, Orlando, FL 32826, U.S.A.

2. Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32826, U.S.A.

3. College of Medicine, University of Central Florida, Orlando, FL 32826, U.S.A.

Abstract

In this letter, we perform a complete and in-depth analysis of Lorentzian noises, such as those arising from [Formula: see text] and [Formula: see text] channel kinetics, in order to identify the source of [Formula: see text]–type noise in neurological membranes. We prove that the autocovariance of Lorentzian noise depends solely on the eigenvalues (time constants) of the kinetic matrix but that the Lorentzian weighting coefficients depend entirely on the eigenvectors of this matrix. We then show that there are rotations of the kinetic eigenvectors that send any initial weights to any target weights without altering the time constants. In particular, we show there are target weights for which the resulting Lorenztian noise has an approximately [Formula: see text]–type spectrum. We justify these kinetic rotations by introducing a quantum mechanical formulation of membrane stochastics, called hidden quantum activated-measurement models, and prove that these quantum models are probabilistically indistinguishable from the classical hidden Markov models typically used for ion channel stochastics. The quantum dividend obtained by replacing classical with quantum membranes is that rotations of the Lorentzian weights become simple readjustments of the quantum state without any change to the laboratory-determined kinetic and conductance parameters. Moreover, the quantum formalism allows us to model the activation energy of a membrane, and we show that maximizing entropy under constrained activation energy yields the previous [Formula: see text]–type Lorentzian weights, in which the spectral exponent [Formula: see text] is a Lagrange multiplier for the energy constraint. Thus, we provide a plausible neurophysical mechanism by which channel and membrane kinetics can give rise to [Formula: see text]–type noise (something that has been occasionally denied in the literature), as well as a realistic and experimentally testable explanation for the numerical values of the spectral exponents. We also discuss applications of quantum membranes beyond [Formula: see text]–type -noise, including applications to animal models and possible impact on quantum foundations.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aggregating Without Bloating: Hard Times for TCP on Wi-Fi;IEEE/ACM Transactions on Networking;2022-10

2. Delay - aware bandwidth estimation and intelligent video transcoder in mobile cloud;Peer-to-Peer Networking and Applications;2021-05-01

3. Cooperative Fault-Tolerant Control of Microgrids Under Switching Communication Topology;IEEE Transactions on Smart Grid;2020-05

4. BBRp: Improving TCP BBR Performance Over WLAN;IEEE Access;2020

5. LTE as a Road Toward 5G: QoS Analysis in Mobility Scenario Using the Monroe Platform;2019 IEEE Wireless Communications and Networking Conference (WCNC);2019-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3