Binless Kernel Machine: Modeling Spike Train Transformation for Cognitive Neural Prostheses

Author:

Qian Cunle1,Sun Xuyun2,Wang Yueming3,Zheng Xiaoxiang3,Wang Yiwen4,Pan Gang5

Affiliation:

1. College of Computer Science, Zhejiang University, Hangzhou 310027, P.R.C., and Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 99077, P.R.C.

2. College of Computer Science, Zhejiang University, Hangzhou 310027, P.R.C.

3. Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, P.R.C.

4. Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 99077, P.R.C.

5. College of Computer Science and State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310027, P.R.C.

Abstract

Modeling spike train transformation among brain regions helps in designing a cognitive neural prosthesis that restores lost cognitive functions. Various methods analyze the nonlinear dynamic spike train transformation between two cortical areas with low computational eficiency. The application of a real-time neural prosthesis requires computational eficiency, performance stability, and better interpretation of the neural firing patterns that modulate target spike generation. We propose the binless kernel machine in the point-process framework to describe nonlinear dynamic spike train transformations. Our approach embeds the binless kernel to eficiently capture the feedforward dynamics of spike trains and maps the input spike timings into reproducing kernel Hilbert space (RKHS). An inhomogeneous Bernoulli process is designed to combine with a kernel logistic regression that operates on the binless kernel to generate an output spike train as a point process. Weights of the proposed model are estimated by maximizing the log likelihood of output spike trains in RKHS, which allows a global-optimal solution. To reduce computational complexity, we design a streaming-based clustering algorithm to extract typical and important spike train features. The cluster centers and their weights enable the visualization of the important input spike train patterns that motivate or inhibit output neuron firing. We test the proposed model on both synthetic data and real spike train data recorded from the dorsal premotor cortex and the primary motor cortex of a monkey performing a center-out task. Performances are evaluated by discrete-time rescaling Kolmogorov-Smirnov tests. Our model outperforms the existing methods with higher stability regardless of weight initialization and demonstrates higher eficiency in analyzing neural patterns from spike timing with less historical input (50%). Meanwhile, the typical spike train patterns selected according to weights are validated to encode output spike from the spike train of single-input neuron and the interaction of two input neurons.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State-sensitive convolutional sparse coding for potential biomarker identification in brain signals;Science China Information Sciences;2024-04-08

2. Online Estimating Pairwise Neuronal Functional Connectivity in Brain–Machine Interface;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2024

3. Neural Manifold Constraint for Spike Prediction Models Under Behavioral Reinforcement;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2024

4. Generative Neural Spike Prediction from Upstream Neural Activity via Behavioral Reinforcement;2023-07-28

5. Decoding Ensemble Spike States from Extracellular Field Potentials;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3