Q&A Label Learning

Author:

Kawamoto Kota1,Uchida Masato2

Affiliation:

1. Waseda University, Tokyo 169-8555, Japan kkwmt0929@ruri.waseda.jp

2. Waseda University, Tokyo 169-8555, Japan m.uchida@waseda.jp

Abstract

Abstract Assigning labels to instances is crucial for supervised machine learning. In this letter, we propose a novel annotation method, Q&A labeling, which involves a question generator that asks questions about the labels of the instances to be assigned and an annotator that answers the questions and assigns the corresponding labels to the instances. We derived a generative model of labels assigned according to two Q&A labeling procedures that differ in the way questions are asked and answered. We showed that in both procedures, the derived model is partially consistent with that assumed in previous studies. The main distinction of this study from previous ones lies in the fact that the label generative model was not assumed but, rather, derived based on the definition of a specific annotation method, Q&A labeling. We also derived a loss function to evaluate the classification risk of ordinary supervised machine learning using instances assigned Q&A labels and evaluated the upper bound of the classification error. The results indicate statistical consistency in learning with Q&A labels.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference17 articles.

1. Classification from pairwise similarity and unlabeled data;Bao,2018

2. Multi-complementary and unlabeled learning for arbitrary losses and models;Cao;Pattern Recognition,2022

3. Learning from partial labels;Cour;Journal of Machine Learning Research,2011

4. Learning with multiple complementary labels;Feng,2020

5. Provably consistent partial-label learning;Feng,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3