Characterizing Brain Connectivity From Human Electrocorticography Recordings With Unobserved Inputs During Epileptic Seizures

Author:

Das Anup1,Sexton Daniel2,Lainscsek Claudia2,Cash Sydney S.3,Sejnowski Terrence J.4

Affiliation:

1. Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, and Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A.

2. Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A.

3. Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, and Harvard Medical School, Boston, MA 02115, U.S.A.

4. Division of Biological Sciences and Institute of Neural Computation, University of California, San Diego, La Jolla, CA 92093, and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A.

Abstract

Epilepsy is a neurological disorder characterized by the sudden occurrence of unprovoked seizures. There is extensive evidence of significantly altered brain connectivity during seizure periods in the human brain. Research on analyzing human brain functional connectivity during epileptic seizures has been limited predominantly to the use of the correlation method. However, spurious connectivity can be measured between two brain regions without having direct connection or interaction between them. Correlations can be due to the apparent interactions of the two brain regions resulting from common input from a third region, which may or may not be observed. Hence, researchers have recently proposed a sparse-plus-latent-regularized precision matrix (SLRPM) when there are unobserved or latent regions interacting with the observed regions. The SLRPM method yields partial correlations of the conditional statistics of the observed regions given the latent regions, thus identifying observed regions that are conditionally independent of both the observed and latent regions. We evaluate the performance of the methods using a spring-mass artificial network and assuming that some nodes cannot be observed, thus constituting the latent variables in the example. Several cases have been considered, including both sparse and dense connections, short-range and long-range connections, and a varying number of latent variables. The SLRPM method is then applied to estimate brain connectivity during epileptic seizures from human ECoG recordings. Seventy-four clinical seizures from five patients, all having complex partial epilepsy, were analyzed using SLRPM, and brain connectivity was quantified using modularity index, clustering coefficient, and eigenvector centrality. Furthermore, using a measure of latent inputs estimated by the SLRPM method, it was possible to automatically detect 72 of the 74 seizures with four false positives and find six seizures that were not marked manually.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3