Power Function Error Initialization Can Improve Convergence of Backpropagation Learning in Neural Networks for Classification

Author:

Knoblauch Andreas1

Affiliation:

1. Albstadt-Sigmaringen University, Albstadt 72458, Germany knoblauch@hs-albsig.de

Abstract

Supervised learning corresponds to minimizing a loss or cost function expressing the differences between model predictions yn and the target values tn given by the training data. In neural networks, this means backpropagating error signals through the transposed weight matrixes from the output layer toward the input layer. For this, error signals in the output layer are typically initialized by the difference yn- tn, which is optimal for several commonly used loss functions like cross-entropy or sum of squared errors. Here I evaluate a more general error initialization method using power functions |yn- tn|q for q>0, corresponding to a new family of loss functions that generalize cross-entropy. Surprisingly, experiments on various learning tasks reveal that a proper choice of q can significantly improve the speed and convergence of backpropagation learning, in particular in deep and recurrent neural networks. The results suggest two main reasons for the observed improvements. First, compared to cross-entropy, the new loss functions provide better fits to the distribution of error signals in the output layer and therefore maximize the model's likelihood more efficiently. Second, the new error initialization procedure may often provide a better gradient-to-loss ratio over a broad range of neural output activity, thereby avoiding flat loss landscapes with vanishing gradients.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference51 articles.

1. Tensorflow: A system for large-scale machine learning.;Abadi,2016

2. Deep learning;Bengio;Nature,2015

3. Learning long-term dependencies with gradient descent is difficult;Bengio;IEEE Transactions on Neural Networks,1994

4. Anatomy of the Cortex

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3