Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion

Author:

Choi Hannah1,Pasupathy Anitha2,Shea-Brown Eric3

Affiliation:

1. Department of Applied Mathematics and UW Institute for Neuroengineering, University of Washington, Seattle, WA 98195, U.S.A.

2. Department of Biological Structure, Washington National Primate Research Center, and UW Institute for Neuroengineering, University of Washington, Seattle, WA 98195, U.S.A.

3. Department of Applied Mathematics, UW Institute for Neuroengineering, and UW Center for Computational Neuroscience, University of Washington, Seattle, WA 98195, and Allen Institute for Brain Science, Seattle, WA 98109, U.S.A.

Abstract

The primate visual system has an exquisite ability to discriminate partially occluded shapes. Recent electrophysiological recordings suggest that response dynamics in intermediate visual cortical area V4, shaped by feedback from prefrontal cortex (PFC), may play a key role. To probe the algorithms that may underlie these findings, we build and test a model of V4 and PFC interactions based on a hierarchical predictive coding framework. We propose that probabilistic inference occurs in two steps. Initially, V4 responses are driven solely by bottom-up sensory input and are thus strongly influenced by the level of occlusion. After a delay, V4 responses combine both feedforward input and feedback signals from the PFC; the latter reflect predictions made by PFC about the visual stimulus underlying V4 activity. We find that this model captures key features of V4 and PFC dynamics observed in experiments. Specifically, PFC responses are strongest for occluded stimuli and delayed responses in V4 are less sensitive to occlusion, supporting our hypothesis that the feedback signals from PFC underlie robust discrimination of occluded shapes. Thus, our study proposes that area V4 and PFC participate in hierarchical inference, with feedback signals encoding top-down predictions about occluded shapes.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3