A Biologically Plausible Neural Network for Multichannel Canonical Correlation Analysis

Author:

Lipshutz David1,Bahroun Yanis2,Golkar Siavash3,Sengupta Anirvan M.4,Chklovskii Dmitri B.5

Affiliation:

1. Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, U.S.A. dlipshutz@flatironinstitute.org

2. Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, U.S.A. ybahroun@flatironinstitute.org

3. Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, U.S.A. sgolkar@flatironinstitute.org

4. Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, U.S.A., and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 U.S.A. anirvans@physics.rutgers.edu

5. Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, U.S.A., and Neuroscience Institute, NYU Medical Center, New York, NY 10016, U.S.A. dchklovskii@flatironinstitute.org

Abstract

Abstract Cortical pyramidal neurons receive inputs from multiple distinct neural populations and integrate these inputs in separate dendritic compartments. We explore the possibility that cortical microcircuits implement canonical correlation analysis (CCA), an unsupervised learning method that projects the inputs onto a common subspace so as to maximize the correlations between the projections. To this end, we seek a multichannel CCA algorithm that can be implemented in a biologically plausible neural network. For biological plausibility, we require that the network operates in the online setting and its synaptic update rules are local. Starting from a novel CCA objective function, we derive an online optimization algorithm whose optimization steps can be implemented in a single-layer neural network with multicompartmental neurons and local non-Hebbian learning rules. We also derive an extension of our online CCA algorithm with adaptive output rank and output whitening. Interestingly, the extension maps onto a neural network whose neural architecture and synaptic updates resemble neural circuitry and non-Hebbian plasticity observed in the cortex.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference51 articles.

1. A convergence analysis of gradient descent for deep linear neural networks.;Arora;Proceedings of the International Conference on Learning Representations,2019

2. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons;Bittner;Nature Neuroscience,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3