Quantifying and Maximizing the Information Flux in Recurrent Neural Networks

Author:

Metzner Claus12,Yamakou Marius E.3,Voelkl Dennis4,Schilling Achim15,Krauss Patrick167

Affiliation:

1. Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany

2. Biophysics Lab, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany claus.metzner@gmail.com

3. Department of Data Science, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany marius.yamakou@fau.de

4. Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany Dennis.Voelkl@stud.uni-regensburg.de

5. Cognitive Computational Neuroscience Group, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany Achim.Schilling@uk-erlangen.de

6. Cognitive Computational Neuroscience Group, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany

7. Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany Patrick.Krauss@uk-erlangen.de

Abstract

Abstract Free-running recurrent neural networks (RNNs), especially probabilistic models, generate an ongoing information flux that can be quantified with the mutual information I[x→(t),x→(t+1)] between subsequent system states x→. Although previous studies have shown that I depends on the statistics of the network’s connection weights, it is unclear how to maximize I systematically and how to quantify the flux in large systems where computing the mutual information becomes intractable. Here, we address these questions using Boltzmann machines as model systems. We find that in networks with moderately strong connections, the mutual information I is approximately a monotonic transformation of the root-mean-square averaged Pearson correlations between neuron pairs, a quantity that can be efficiently computed even in large systems. Furthermore, evolutionary maximization of I[x→(t),x→(t+1)] reveals a general design principle for the weight matrices enabling the systematic construction of systems with a high spontaneous information flux. Finally, we simultaneously maximize information flux and the mean period length of cyclic attractors in the state-space of these dynamical networks. Our results are potentially useful for the construction of RNNs that serve as short-time memories or pattern generators.

Publisher

MIT Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Word class representations spontaneously emerge in a deep neural network trained on next word prediction;2023 International Conference on Machine Learning and Applications (ICMLA);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3