Identifying Functional Bases for Multidimensional Neural Computations

Author:

Kaardal Joel1,Fitzgerald Jeffrey D.1,Berry Michael J.2,Sharpee Tatyana O.1

Affiliation:

1. Computational Neurobiology Laboratory and Crick-Jacobs Center for Theoretical and Computational Biology, Salk Center for Biological Studies, La Jolla, CA 92037; and Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, CA 92037, U.S.A.

2. Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, U.S.A.

Abstract

Current dimensionality-reduction methods can identify relevant subspaces for neural computations but do not favor one basis over the other within the relevant subspace. Finding the appropriate basis can simplify the description of the nonlinear computation with respect to the relevant variables, making it easier to elucidate the underlying neural computation and make hypotheses about the neural circuitry, giving rise to the observed responses. Part of the problem is that although some of the dimensionality reduction methods can identify many of the relevant dimensions, it is usually difficult to map out or interpret the nonlinear transformation with respect to more than a few relevant dimensions simultaneously without some simplifying assumptions. While recent approaches make it possible to create predictive models based on many relevant dimensions simultaneously, there still remains the need to relate such predictive models to the mechanistic descriptions of the operation of underlying neural circuitry. Here we demonstrate that transforming to a basis within the relevant subspace where the neural computation is best described by a given nonlinear function often makes it easier to interpret the computation and describe it with a small number of parameters. We refer to the corresponding basis as the functional basis, and illustrate the utility of such transformation in the context of logical OR and logical AND functions. We show that although dimensionality-reduction methods such as spike-triggered covariance are able to find a relevant subspace, they often produce dimensions that are difficult to interpret and do not correspond to a functional basis. The functional features can be found using a maximum likelihood approach. The results are illustrated using simulated neurons and recordings from retinal ganglion cells. The resulting features are uniquely defined and nonorthogonal, and they make it easier to relate computational and mechanistic models to each other.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3