Strong Allee Effect Synaptic Plasticity Rule in an Unsupervised Learning Environment

Author:

Kwessi Eddy1

Affiliation:

1. Department of Mathematics, Trinity University, San Antonio, TX 78212, U.S.A. ekwessi@trinity.edu

Abstract

Abstract Synaptic plasticity, or the ability of a brain to change one or more of its functions or structures at the synaptic level, has generated and is still generating a lot of interest from the scientific community especially from neuroscientists. These interests went into high gear after empirical evidence was collected that challenged the established paradigm that human brain structures and functions are set from childhood and only modest changes were expected beyond. Early synaptic plasticity rules or laws to that regard include the basic Hebbian rule that proposed a mechanism for strengthening or weakening of synapses (weights) during learning and memory. This rule, however, did not account for the fact that weights must have bounded growth over time. Thereafter, many other rules that possess other desirable properties were proposed to complement the basic Hebbian rule. In particular, a desirable property in a synaptic plasticity rule is that the ambient system must account for inhibition, which is often achieved if the rule used allows for a lower bound in synaptic weights. To that regard, in this letter, we propose such a synaptic plasticity rule that is inspired by the Allee effect, a phenomenon often observed in population dynamics. We show that properties such as synaptic normalization, competition between weights, decorrelation potential, and dynamic stability are satisfied. We show that in fact, an Allee effect in synaptic plasticity can be construed as an absence of plasticity.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference36 articles.

1. A discrete-time host-parasitoid discrete model with an Allee effect;Assas;Journal of Biological Dynamics,2015

2. Hierarchical competition models with the Allee effect II: The case of immigration;Assas;Journal of Biological Dynamics,2015

3. Stochastic modified Beverton-Holt model with Allee effects II: The Cushing-Henson conjecture;Assas;Journal of Difference Equations and Applications,2016

4. Competition models with Allee effects;Assas;Journal of Difference Equations and Applications,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3