A Computationally Efficient Visual Saliency Algorithm Suitable for an Analog CMOS Implementation

Author:

D'Angelo Robert1,Wood Richard2,Lowry Nathan2,Freifeld Geremy2,Huang Haiyao2,Salthouse Christopher D.2,Hollosi Brent2,Muresan Matthew2,Uy Wes2,Tran Nhut2,Chery Armand2,Poppe Dorothy C.2,Sonkusale Sameer3

Affiliation:

1. Draper Laboratory, Cambridge, MA 02139, U.S.A., and Tufts University, Medford, MA 02155, U.S.A.

2. Draper Laboratory, Cambridge, MA 02139. U.S.A.

3. Tufts University, Medford, MA 02155, U.S.A.

Abstract

Computer vision algorithms are often limited in their application by the large amount of data that must be processed. Mammalian vision systems mitigate this high bandwidth requirement by prioritizing certain regions of the visual field with neural circuits that select the most salient regions. This work introduces a novel and computationally efficient visual saliency algorithm for performing this neuromorphic attention-based data reduction. The proposed algorithm has the added advantage that it is compatible with an analog CMOS design while still achieving comparable performance to existing state-of-the-art saliency algorithms. This compatibility allows for direct integration with the analog-to-digital conversion circuitry present in CMOS image sensors. This integration leads to power savings in the converter by quantizing only the salient pixels. Further system-level power savings are gained by reducing the amount of data that must be transmitted and processed in the digital domain. The analog CMOS compatible formulation relies on a pulse width (i.e., time mode) encoding of the pixel data that is compatible with pulse-mode imagers and slope based converters often used in imager designs. This letter begins by discussing this time-mode encoding for implementing neuromorphic architectures. Next, the proposed algorithm is derived. Hardware-oriented optimizations and modifications to this algorithm are proposed and discussed. Next, a metric for quantifying saliency accuracy is proposed, and simulation results of this metric are presented. Finally, an analog synthesis approach for a time-mode architecture is outlined, and postsynthesis transistor-level simulations that demonstrate functionality of an implementation in a modern CMOS process are discussed.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perovskite-Based Memristor with 50-Fold Switchable Photosensitivity for In-Sensor Computing Neural Network;Nanomaterials;2022-06-28

2. An Energy Efficient Time-Mode Analog Neural Network;2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS);2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3