Hebbian Descent: A Unified View on Log-Likelihood Learning

Author:

Melchior Jan1,Schiewer Robin2,Wiskott Laurenz3

Affiliation:

1. Ruhr University Bochum, 44801 Bochum, Germany jan.melchior@ini.rub.de

2. Ruhr University Bochum, 44801 Bochum, Germany robin.schiewer@ini.rub.de

3. Ruhr University Bochum, 44801 Bochum, Germany laurenz.wiskott@ini.rub.de

Abstract

Abstract This study discusses the negative impact of the derivative of the activation functions in the output layer of artificial neural networks, in particular in continual learning. We propose Hebbian descent as a theoretical framework to overcome this limitation, which is implemented through an alternative loss function for gradient descent we refer to as Hebbian descent loss. This loss is effectively the generalized log-likelihood loss and corresponds to an alternative weight update rule for the output layer wherein the derivative of the activation function is disregarded. We show how this update avoids vanishing error signals during backpropagation in saturated regions of the activation functions, which is particularly helpful in training shallow neural networks and deep neural networks where saturating activation functions are only used in the output layer. In combination with centering, Hebbian descent leads to better continual learning capabilities. It provides a unifying perspective on Hebbian learning, gradient descent, and generalized linear models, for all of which we discuss the advantages and disadvantages. Given activation functions with strictly positive derivative (as often the case in practice), Hebbian descent inherits the convergence properties of regular gradient descent. While established pairings of loss and output layer activation function (e.g., mean squared error with linear or cross-entropy with sigmoid/softmax) are subsumed by Hebbian descent, we provide general insights for designing arbitrary loss activation function combinations that benefit from Hebbian descent. For shallow networks, we show that Hebbian descent outperforms Hebbian learning, has a performance similar to regular gradient descent, and has a much better performance than all other tested update rules in continual learning. In combination with centering, Hebbian descent implements a forgetting mechanism that prevents catastrophic interference notably better than the other tested update rules. When training deep neural networks, our experimental results suggest that Hebbian descent has better or similar performance as gradient descent.

Publisher

MIT Press

Reference77 articles.

1. Avoiding catastrophic forgetting by coupling two reverberating neural networks;Ans;Comptes Rendus de l’Académie des Sciences, Series III: Sciences de la Vie,1997

2. Learning by on-line gradient descent;Biehl;Journal of Physics A: Mathematical and General,1995

3. Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex;Bienenstock;Journal of Neuroscience,1982

4. Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition;Bridle,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3