Supervised Dimensionality Reduction on Grassmannian for Image Set Recognition

Author:

Liu Tianci1,Shi Zelin2,Liu Yunpeng2

Affiliation:

1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences, Shenyang 110016, China; and Key Lab of Image Understanding and Computer Vision, Liaoning Province, Shenyang 110016, China

2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences, Shenyang 110016, China; and Key Lab of Image Understanding and Computer Vision, Liaoning Province, Shenyang 110016, China

Abstract

Modeling videos and image sets by linear subspaces has achieved great success in various visual recognition tasks. However, subspaces constructed from visual data are always notoriously embedded in a high-dimensional ambient space, which limits the applicability of existing techniques. This letter explores the possibility of proposing a geometry-aware framework for constructing lower-dimensional subspaces with maximum discriminative power from high-dimensional subspaces in the supervised scenario. In particular, we make use of Riemannian geometry and optimization techniques on matrix manifolds to learn an orthogonal projection, which shows that the learning process can be formulated as an unconstrained optimization problem on a Grassmann manifold. With this natural geometry, any metric on the Grassmann manifold can theoretically be used in our model. Experimental evaluations on several data sets show that our approach results in significantly higher accuracy than other state-of-the-art algorithms.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constructing and applying a neural-network-based architectural landscape evaluation model;Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction;2024-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3