Window-Based Example Selection in Learning Vector Quantization

Author:

Witoelar A. W.1,Ghosh A.2,de Vries J. J. G.3,Hammer B.4,Biehl M.1

Affiliation:

1. Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen 9747 AG, Netherlands

2. School of Computer Science and Statistics, Trinity College, Dublin 2, Ireland

3. Philips Research Europe, Eindhoven 5656 AE, Netherlands

4. Center of Excellence Cognitive Interaction Technology, Bielefeld University, 33615 Bielefeld, Germany

Abstract

A variety of modifications have been employed to learning vector quantization (LVQ) algorithms using either crisp or soft windows for selection of data. Although these schemes have been shown in practice to improve performance, a theoretical study on the influence of windows has so far been limited. Here we rigorously analyze the influence of windows in a controlled environment of gaussian mixtures in high dimensions. Concepts from statistical physics and the theory of online learning allow an exact description of the training dynamics, yielding typical learning curves, convergence properties, and achievable generalization abilities. We compare the performance and demonstrate the advantages of various algorithms, including LVQ 2.1, generalized LVQ (GLVQ), Learning from Mistakes (LFM) and Robust Soft LVQ (RSLVQ). We find that the selection of the window parameter highly influences the learning curves but not, surprisingly, the asymptotic performances of LVQ 2.1 and RSLVQ. Although the prototypes of LVQ 2.1 exhibit divergent behavior, the resulting decision boundary coincides with the optimal decision boundary, thus yielding optimal generalization ability.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3