A Transition to Sharp Timing in Stochastic Leaky Integrate-and-Fire Neurons Driven by Frozen Noisy Input

Author:

Taillefumier Thibaud1,Magnasco Marcelo2

Affiliation:

1. Laboratory of Mathematical Physics, Rockefeller University, New York, NY 10065, U.S.A., and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, U.S.A.

2. Laboratory of Mathematical Physics, Rockefeller University, New York, NY 10065, U.S.A.

Abstract

The firing activity of intracellularly stimulated neurons in cortical slices has been demonstrated to be profoundly affected by the temporal structure of the injected current (Mainen & Sejnowski, 1995 ). This suggests that the timing features of the neural response may be controlled as much by its own biophysical characteristics as by how a neuron is wired within a circuit. Modeling studies have shown that the interplay between internal noise and the fluctuations of the driving input controls the reliability and the precision of neuronal spiking (Cecchi et al., 2000 ; Tiesinga, 2002 ; Fellous, Rudolph, Destexhe, & Sejnowski, 2003 ). In order to investigate this interplay, we focus on the stochastic leaky integrate-and-fire neuron and identify the Hölder exponent H of the integrated input as the key mathematical property dictating the regime of firing of a single-unit neuron. We have recently provided numerical evidence (Taillefumier & Magnasco, 2013 ) for the existence of a phase transition when [Formula: see text] becomes less than the statistical Hölder exponent associated with internal gaussian white noise (H=1/2). Here we describe the theoretical and numerical framework devised for the study of a neuron that is periodically driven by frozen noisy inputs with exponent H>0. In doing so, we account for the existence of a transition between two regimes of firing when H=1/2, and we show that spiking times have a continuous density when the Hölder exponent satisfies H>1/2. The transition at H=1/2 formally separates rate codes, for which the neural firing probability varies smoothly, from temporal codes, for which the neuron fires at sharply defined times regardless of the intensity of internal noise.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. First passage leapovers of Lévy flights and the proper formulation of absorbing boundary conditions;Journal of Physics A: Mathematical and Theoretical;2020-08-24

2. First Passage Time Densities through Hölder curves;Latin American Journal of Probability and Mathematical Statistics;2018

3. Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience;The Journal of Mathematical Neuroscience;2016-01-06

4. Successive spike times predicted by a stochastic neuronal model with a variable input signal;Mathematical Biosciences and Engineering;2016

5. Towards Stochastic Modeling of Neuronal Interspike Intervals Including a Time-Varying Input Signal;Computer Aided Systems Theory – EUROCAST 2015;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3