A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition

Author:

Ahmadi Ahmadreza1,Tani Jun2

Affiliation:

1. Okinawa Institute of Science and Technology, Okinawa, Japan 904-0495, and School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea

2. Okinawa Institute of Science and Technology, Okinawa, Japan 904-0495

Abstract

This study introduces PV-RNN, a novel variational RNN inspired by predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how latent variables can learn meaningful representations and how the inference model can transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation—rather than external inputs during the forward computation—are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. As in other variational Bayes RNNs, our model learns by maximizing a lower bound on the marginal likelihood of the sequential data, which is composed of two terms: the negative of the expectation of prediction errors and the negative of the Kullback-Leibler divergence between the prior and the approximate posterior distributions. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on those two terms. We test the model on two data sets with probabilistic structures and show that with high values of the meta-prior, the network develops deterministic chaos through which the randomness of the data is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows us to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3