Evaluating the Potential Gain of Auditory and Audiovisual Speech-Predictive Coding Using Deep Learning

Author:

Hueber Thomas1,Tatulli Eric1,Girin Laurent2,Schwartz Jean-Luc1

Affiliation:

1. Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France

2. Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France, and Inria Grenoble-Rhône-Alpes, 38330 Montbonnot-Saint Martin, France

Abstract

Sensory processing is increasingly conceived in a predictive framework in which neurons would constantly process the error signal resulting from the comparison of expected and observed stimuli. Surprisingly, few data exist on the accuracy of predictions that can be computed in real sensory scenes. Here, we focus on the sensory processing of auditory and audiovisual speech. We propose a set of computational models based on artificial neural networks (mixing deep feedforward and convolutional networks), which are trained to predict future audio observations from present and past audio or audiovisual observations (i.e., including lip movements). Those predictions exploit purely local phonetic regularities with no explicit call to higher linguistic levels. Experiments are conducted on the multispeaker LibriSpeech audio speech database (around 100 hours) and on the NTCD-TIMIT audiovisual speech database (around 7 hours). They appear to be efficient in a short temporal range (25–50 ms), predicting 50% to 75% of the variance of the incoming stimulus, which could result in potentially saving up to three-quarters of the processing power. Then they quickly decrease and almost vanish after 250 ms. Adding information on the lips slightly improves predictions, with a 5% to 10% increase in explained variance. Interestingly the visual gain vanishes more slowly, and the gain is maximum for a delay of 75 ms between image and predicted sound.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3