A New Nonlinear Sparse Component Analysis for a Biologically Plausible Model of Neurons

Author:

Heidarieh S. M.1,Jahed M.1,Ghazizadeh A.2

Affiliation:

1. School of Electrical Engineering, Sharif University of Technology, Tehran, Iran

2. School of Electrical Engineering and Brain Research Center Bio-Intelligence Research Unit, Sharif University of Technology, Tehran, Iran

Abstract

It is known that brain can create a sparse representation of the environment in both sensory and mnemonic forms (Olshausen & Field, 2004 ). Such sparse representation can be combined in downstream areas to create rich multisensory responses to support various cognitive and motor functions. Determining the components present in neuronal responses in a given region is key to deciphering its functional role and connection with upstream areas. One approach for parsing out various sources of information in a single neuron is by using linear blind source separation (BSS) techniques. However, applying linear techniques to neuronal spiking activity is likely to be suboptimal due to inherent and unknown nonlinearity of neuronal responses to inputs. This letter proposes a nonlinear sparse component analysis (SCA) method to separate jointly sparse inputs to neurons with post summation nonlinearity, or SCA for post-nonlinear neurons (SCAPL). Specifically, a linear clustering approach followed by principal curve regression (PCR) and a nonlinear curve fitting are used to separate sources. Analysis using simulated data shows that SCAPL accuracy outperforms ones obtained by linear SCA, as well as other separating methods, including linear independent and principal component analyses. In SCAPL, the number of derived sparse components is not limited by the number of neurons, unlike most BSS methods. Furthermore, this method allows for a broad range of post-summation nonlinearities that could differ among neurons. The sensitivity of our method to noise, joint sparseness, degree, and shape of nonlinearity and mixing ill conditions is discussed and compared to existing methods. Our results show that the proposed method can successfully separate input components in a population of neurons provided that they are temporally sparse to some degree. Application of SCAPL should facilitate comparison of functional roles across regions by parsing various elements present in a region.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3