Optimization and Learning With Randomly Compressed Gradient Updates

Author:

Huang Zhanliang1,Lei Yunwen2,Kabán Ata3

Affiliation:

1. School of Computer Science, University of Birmingham B15 277, U.K. zxh898@student.bham.ac.uk

2. Department of Mathematics, Hong Kong Baptist University, Hong Kong, China yunwen@hkbu.edu.hk

3. School of Computer Science, University of Birmingham B15 277, U.K. A.Kaban@bham.ac.uk

Abstract

Abstract Gradient descent methods are simple and efficient optimization algorithms with widespread applications. To handle high-dimensional problems, we study compressed stochastic gradient descent (SGD) with low-dimensional gradient updates. We provide a detailed analysis in terms of both optimization rates and generalization rates. To this end, we develop uniform stability bounds for CompSGD for both smooth and nonsmooth problems, based on which we develop almost optimal population risk bounds. Then we extend our analysis to two variants of SGD: batch and mini-batch gradient descent. Furthermore, we show that these variants achieve almost optimal rates compared to their high-dimensional gradient setting. Thus, our results provide a way to reduce the dimension of gradient updates without affecting the convergence rate in the generalization analysis. Moreover, we show that the same result also holds in the differentially private setting, which allows us to reduce the dimension of added noise with “almost free” cost.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference52 articles.

1. QSGD: Communication-efficient SGD via gradient quantization and encoding;Alistarh,2017

2. The convergence of sparsified gradient methods;Alistarh,2018

3. Structured sparsity through convex optimization;Bach;Statistical Science,2012

4. Privacy amplification by subsampling: Tight analyses via couplings and divergences;Balle,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3