Chaotic Resonance in Coupled Inferior Olive Neurons with the Llinás Approach Neuron Model

Author:

Nobukawa Sou1,Nishimura Haruhiko2

Affiliation:

1. Department of Management Information Science, Fukui University of Technology, Fukui, Fukui, 910–8505 Japan

2. Graduate School of Applied Informatics, University of Hyogo, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650–8588 Japan

Abstract

It is well known that cerebellar motor control is fine-tuned by the learning process adjusted according to rich error signals from inferior olive (IO) neurons. Schweighofer and colleagues proposed that these signals can be produced by chaotic irregular firing in the IO neuron assembly; such chaotic resonance (CR) was replicated in their computer demonstration of a Hodgkin-Huxley (HH)-type compartment model. In this study, we examined the response of CR to a periodic signal in the IO neuron assembly comprising the Llinás approach IO neuron model. This system involves empirically observed dynamics of the IO membrane potential and is simpler than the HH-type compartment model. We then clarified its dependence on electrical coupling strength, input signal strength, and frequency. Furthermore, we compared the physiological validity for IO neurons such as low firing rate and sustaining subthreshold oscillation between CR and conventional stochastic resonance (SR) and examined the consistency with asynchronous firings indicated by the previous model-based studies in the cerebellar learning process. In addition, the signal response of CR and SR was investigated in a large neuron assembly. As the result, we confirmed that CR was consistent with the above IO neuron’s characteristics, but it was not as easy for SR.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3