Mirror Descent of Hopfield Model

Author:

Soh Hyungjoon1,Kim Dongyeob2,Hwang Juno3,Jo Junghyo456

Affiliation:

1. Department of Physics Education, Seoul National University, Seoul 08826, Korea hjsoh88@gmail.com

2. Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea ktfa159@snu.ac.kr

3. Department of Physics Education, Seoul National University, Seoul 08826, Korea wnsdh10@snu.ac.kr

4. Department of Physics Education, Department of Physics and Astronomy, and Center for Theoretical Physics and Artificial Intelligence Institute

5. Seoul National University, Seoul 08826, Korea

6. School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455 jojunghyo@snu.ac.kr

Abstract

Abstract Mirror descent is an elegant optimization technique that leverages a dual space of parametric models to perform gradient descent. While originally developed for convex optimization, it has increasingly been applied in the field of machine learning. In this study, we propose a novel approach for using mirror descent to initialize the parameters of neural networks. Specifically, we demonstrate that by using the Hopfield model as a prototype for neural networks, mirror descent can effectively train the model with significantly improved performance compared to traditional gradient descent methods that rely on random parameter initialization. Our findings highlight the potential of mirror descent as a promising initialization technique for enhancing the optimization of machine learning models.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference26 articles.

1. A learning algorithm for Boltzmann machines;Ackley,1985

2. Stochastic mirror descent on overparameterized nonlinear models;Azizan,2021

3. Mirror descent and nonlinear projected subgradient methods for convex optimization;Beck,2003

4. Fast convergence of competitive spiking neural networks with sample-based weight initialization;Cachi,2020

5. PCANet: A simple deep learning baseline for image classification?;Chan,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3