The Neuronal Replicator Hypothesis

Author:

Fernando Chrisantha1,Goldstein Richard2,Szathmáry Eörs3

Affiliation:

1. Collegium Budapest (Institute for Advanced Study), H-10104 Budapest, Hungary; Department of Informatics, University of Sussex, Falmer, Brighton, BN1 9RH, U.K.; and MRC National Institute for Medical Research, London NW7 1AA, U.K.

2. MRC National Institute for Medical Research, London NW7 1AA, U.K.

3. Collegium Budapest (Institute for Advanced Study), H-10104, Budapest, Hungary; Parmenides Foundation, D-80333 Munich, Germany; and Eötvös University, H1117 Budapest, Hungary

Abstract

We propose that replication (with mutation) of patterns of neuronal activity can occur within the brain using known neurophysiological processes. Thereby evolutionary algorithms implemented by neuro- nal circuits can play a role in cognition. Replication of structured neuronal representations is assumed in several cognitive architectures. Replicators overcome some limitations of selectionist models of neuronal search. Hebbian learning is combined with replication to structure exploration on the basis of associations learned in the past. Neuromodulatory gating of sets of bistable neurons allows patterns of activation to be copied with mutation. If the probability of copying a set is related to the utility of that set, then an evolutionary algorithm can be implemented at rapid timescales in the brain. Populations of neuronal replicators can undertake a more rapid and stable search than can be achieved by serial modification of a single solution. Hebbian learning added to neuronal replication allows a powerful structuring of variability capable of learning the location of a global optimum from multiple previously visited local optima. Replication of solutions can solve the problem of catastrophic forgetting in the stability-plasticity dilemma. In short, neuronal replication is essential to explain several features of flexible cognition. Predictions are made for the experimental validation of the neuronal replicator hypothesis.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3