Automatic Hyperparameter Tuning in Sparse Matrix Factorization

Author:

Kawasumi Ryota1,Takeda Koujin2

Affiliation:

1. Department of Mathematics, Graduate School of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan rykawasumi@gmail.com

2. Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan koujin.takeda.kt@vc.ibaraki.ac.jp

Abstract

Abstract We study the problem of hyperparameter tuning in sparse matrix factorization under a Bayesian framework. In prior work, an analytical solution of sparse matrix factorization with Laplace prior was obtained by a variational Bayes method under several approximations. Based on this solution, we propose a novel numerical method of hyperparameter tuning by evaluating the zero point of the normalization factor in a sparse matrix prior. We also verify that our method shows excellent performance for ground-truth sparse matrix reconstruction by comparing it with the widely used algorithm of sparse principal component analysis.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference26 articles.

1. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation;Aharon;IEEE Trans. Signal Process.,2006

2. Estimating lasso risk and noise level;Bayati,2013

3. A direct formulation for sparse PCA using semidefinite programming;d'Aspremont;SIAM Rev.,2007

4. The degrees of freedom of the lasso for general design matrix;Dossal;Stat. Sin.,2013

5. Method of optimal directions for frame design;Engan,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3