Nonconvex Policy Search Using Variational Inequalities

Author:

Zhan Yusen1,Ammar Haitham Bou2,Taylor Matthew E.1

Affiliation:

1. School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99163, U.S.A.

2. Department of Computer Science, American University of Beirut, 1107 2020, Lebanon

Abstract

Policy search is a class of reinforcement learning algorithms for finding optimal policies in control problems with limited feedback. These methods have been shown to be successful in high-dimensional problems such as robotics control. Though successful, current methods can lead to unsafe policy parameters that potentially could damage hardware units. Motivated by such constraints, we propose projection-based methods for safe policies. These methods, however, can handle only convex policy constraints. In this letter, we propose the first safe policy search reinforcement learner capable of operating under nonconvex policy constraints. This is achieved by observing, for the first time, a connection between nonconvex variational inequalities and policy search problems. We provide two algorithms, Mann and two-step iteration, to solve the above problems and prove convergence in the nonconvex stochastic setting. Finally, we demonstrate the performance of the algorithms on six benchmark dynamical systems and show that our new method is capable of outperforming previous methods under a variety of settings.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference30 articles.

1. Predictor–Corrector Methods for General Regularized Nonconvex Variational Inequalities

2. Bertsekas, D. P. (2009). Projected equations, variational inequalities, and temporal difference methods (Lab. for Information and Decision Systems Report LIDS-P-2808). Cambridge, MA: MIT Press.

3. Natural actor–critic algorithms

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimum and Maximum Principle Sufficiency for a Nonsmooth Variational Inequality;Bulletin of the Malaysian Mathematical Sciences Society;2020-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3