Toward a Kernel-Based Uncertainty Decomposition Framework for Data and Models

Author:

Singh Rishabh1,Principe Jose C.2

Affiliation:

1. Computational NeuroEngineering Laboratory, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, U.S.A. rish283@ufl.edu

2. Computational NeuroEngineering Laboratory, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, U.S.A. principe@cnel.ufl.edu

Abstract

Abstract This letter introduces a new framework for quantifying predictive uncertainty for both data and models that relies on projecting the data into a gaussian reproducing kernel Hilbert space (RKHS) and transforming the data probability density function (PDF) in a way that quantifies the flow of its gradient as a topological potential field (quantified at all points in the sample space). This enables the decomposition of the PDF gradient flow by formulating it as a moment decomposition problem using operators from quantum physics, specifically Schrödinger's formulation. We experimentally show that the higher-order moments systematically cluster the different tail regions of the PDF, thereby providing unprecedented discriminative resolution of data regions having high epistemic uncertainty. In essence, this approach decomposes local realizations of the data PDF in terms of uncertainty moments. We apply this framework as a surrogate tool for predictive uncertainty quantification of point-prediction neural network models, overcoming various limitations of conventional Bayesian-based uncertainty quantification methods. Experimental comparisons with some established methods illustrate performance advantages that our framework exhibits.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference62 articles.

1. Modeling stock return distributions with a quantum harmonic oscillator;Ahn;Europhysics Letters,2018

2. Theory of reproducing kernels;Aronszajn;Transactions of the American Mathematical Society,1950

3. A new wave equation for a continuous nondemolition measurement;Belavkin;Physics Letters A,1989

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finding Local Dependent Regions in PDFs using RKHS Uncertainty Moments and Optimal Transport;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3