Semisupervised Deep Stacking Network with Adaptive Learning Rate Strategy for Motor Imagery EEG Recognition

Author:

Tang Xian-Lun1,Ma Wei-Chang1,Kong De-Song1,Li Wei1

Affiliation:

1. Key Laboratory of Network Control and Intelligent Instrument, Chongqing University of Posts and Telecommunications, Ministry of Education, Chongqing 400065, China

Abstract

Practical motor imagery electroencephalogram (EEG) data-based applications are limited by the waste of unlabeled samples in supervised learning and excessive time consumption in the pretraining period. A semisupervised deep stacking network with an adaptive learning rate strategy (SADSN) is proposed to solve the sample loss caused by supervised learning of EEG data and the extraction of manual features. The SADSN adopts the idea of an adaptive learning rate into a contrastive divergence (CD) algorithm to accelerate its convergence. Prior knowledge is introduced into the intermediary layer of the deep stacking network, and a restricted Boltzmann machine is trained by a semisupervised method in which the adjusting scope of the coefficient in learning rate is determined by performance analysis. Several EEG data sets are carried out to evaluate the performance of the proposed method. The results show that the recognition accuracy of SADSN is advanced with a more significant convergence rate and successfully classifies motor imagery.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3