A Semiparametric Bayesian Model for Detecting Synchrony Among Multiple Neurons

Author:

Shahbaba Babak1,Zhou Bo1,Lan Shiwei1,Ombao Hernando1,Moorman David2,Behseta Sam3

Affiliation:

1. Department of Statistics, UC Irvine, CA 92697, U.S.A.

2. Department of Psychology, University of Massachusetts Amherst, MA 01003, U.S.A.

3. Department of Mathematics, California State University, Fullerton, CA 92834, U.S.A.

Abstract

We propose a scalable semiparametric Bayesian model to capture dependencies among multiple neurons by detecting their cofiring (possibly with some lag time) patterns over time. After discretizing time so there is at most one spike at each interval, the resulting sequence of 1s (spike) and 0s (silence) for each neuron is modeled using the logistic function of a continuous latent variable with a gaussian process prior. For multiple neurons, the corresponding marginal distributions are coupled to their joint probability distribution using a parametric copula model. The advantages of our approach are as follows. The nonparametric component (i.e., the gaussian process model) provides a flexible framework for modeling the underlying firing rates, and the parametric component (i.e., the copula model) allows us to make inferences regarding both contemporaneous and lagged relationships among neurons. Using the copula model, we construct multivariate probabilistic models by separating the modeling of univariate marginal distributions from the modeling of a dependence structure among variables. Our method is easy to implement using a computationally efficient sampling algorithm that can be easily extended to high-dimensional problems. Using simulated data, we show that our approach could correctly capture temporal dependencies in firing rates and identify synchronous neurons. We also apply our model to spike train data obtained from prefrontal cortical areas.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3