Adversarial Feature Alignment: Avoid Catastrophic Forgetting in Incremental Task Lifelong Learning

Author:

Yao Xin1,Huang Tianchi1,Wu Chenglei1,Zhang Rui-Xiao1,Sun Lifeng1

Affiliation:

1. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Abstract

Humans are able to master a variety of knowledge and skills with ongoing learning. By contrast, dramatic performance degradation is observed when new tasks are added to an existing neural network model. This phenomenon, termed catastrophic forgetting, is one of the major roadblocks that prevent deep neural networks from achieving human-level artificial intelligence. Several research efforts (e.g., lifelong or continual learning algorithms) have proposed to tackle this problem. However, they either suffer from an accumulating drop in performance as the task sequence grows longer, or require storing an excessive number of model parameters for historical memory, or cannot obtain competitive performance on the new tasks. In this letter, we focus on the incremental multitask image classification scenario. Inspired by the learning process of students, who usually decompose complex tasks into easier goals, we propose an adversarial feature alignment method to avoid catastrophic forgetting. In our design, both the low-level visual features and high-level semantic features serve as soft targets and guide the training process in multiple stages, which provide sufficient supervised information of the old tasks and help to reduce forgetting. Due to the knowledge distillation and regularization phenomena, the proposed method gains even better performance than fine-tuning on the new tasks, which makes it stand out from other methods. Extensive experiments in several typical lifelong learning scenarios demonstrate that our method outperforms the state-of-the-art methods in both accuracy on new tasks and performance preservation on old tasks.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lifelong Vehicle Trajectory Prediction Framework Based on Generative Replay;IEEE Transactions on Intelligent Transportation Systems;2023-12

2. A Survey on Deep Transfer Learning and Beyond;Mathematics;2022-10-03

3. Towards lifelong thermal comfort prediction with KubeEdge-sedna;Proceedings of the Thirteenth ACM International Conference on Future Energy Systems;2022-06-28

4. Reducing catastrophic forgetting problem in streaming data by hybrid shark smell with jaya optimization-based deep neural networks;International Journal of Modeling, Simulation, and Scientific Computing;2022-02-04

5. Detecting and Learning the Unknown in Semantic Segmentation;Deep Neural Networks and Data for Automated Driving;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3