Deeply Felt Affect: The Emergence of Valence in Deep Active Inference

Author:

Hesp Casper1,Smith Ryan2,Parr Thomas3,Allen Micah4,Friston Karl J.5,Ramstead Maxwell J. D.6

Affiliation:

1. Department of Psychology and Amsterdam Brain and Cognition Centre, University of Amsterdam, 1098 XH Amsterdam, Netherlands; Institute for Advanced Study, University of Amsterdam, 1012 GC Amsterdam, Netherlands; and Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, U.K. c.hesp@uva.nl

2. Laureate Institute for Brain Research, Tulsa, OK 74136, U.S.A. RSmith@laureateinstitute.org

3. Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, U.K. thomas.parr.12@ucl.ac.uk

4. Aarhus Institute of Advanced Studies, Aarhus University, Aarhus 8000, Denmark; Centre of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus 8200, Denmark; and Cambridge Psychiatry, Cambridge University, Cambridge CB2 8AH. U.K. micah.allen@medschl.cam.ac.uk

5. Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, U.K. k.friston@ucl.ac.uk

6. Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, U.K.; Division of Social and Transcultural Psychiatry, Department of Psychiatry and Culture, Mind, and Brain Program, McGill University, Montreal H3A 0G4, QC, Canada maxwell.d.ramstead@gmail.com

Abstract

Abstract The positive-negative axis of emotional valence has long been recognized as fundamental to adaptive behavior, but its origin and underlying function have largely eluded formal theorizing and computational modeling. Using deep active inference, a hierarchical inference scheme that rests on inverting a model of how sensory data are generated, we develop a principled Bayesian model of emotional valence. This formulation asserts that agents infer their valence state based on the expected precision of their action model—an internal estimate of overall model fitness (“subjective fitness”). This index of subjective fitness can be estimated within any environment and exploits the domain generality of second-order beliefs (beliefs about beliefs). We show how maintaining internal valence representations allows the ensuing affective agent to optimize confidence in action selection preemptively. Valence representations can in turn be optimized by leveraging the (Bayes-optimal) updating term for subjective fitness, which we label affective charge (AC). AC tracks changes in fitness estimates and lends a sign to otherwise unsigned divergences between predictions and outcomes. We simulate the resulting affective inference by subjecting an in silico affective agent to a T-maze paradigm requiring context learning, followed by context reversal. This formulation of affective inference offers a principled account of the link between affect, (mental) action, and implicit metacognition. It characterizes how a deep biological system can infer its affective state and reduce uncertainty about such inferences through internal action (i.e., top-down modulation of priors that underwrite confidence). Thus, we demonstrate the potential of active inference to provide a formal and computationally tractable account of affect. Our demonstration of the face validity and potential utility of this formulation represents the first step within a larger research program. Next, this model can be leveraged to test the hypothesized role of valence by fitting the model to behavioral and neuronal responses.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3