Affiliation:
1. Center for Biomedical Engineering and Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor Bahru, Malaysia
2. Center for Biomedical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor Bahru, Malaysia
Abstract
Recent research has reached a consensus on the feasibility of motor imagery brain-computer interface (MI-BCI) for different applications, especially in stroke rehabilitation. Most MI-BCI systems rely on temporal, spectral, and spatial features of single channels to distinguish different MI patterns. However, no successful communication has been established for a completely locked-in subject. To provide more useful and informative features, it has been recommended to take into account the relationships among electroencephalographic (EEG) sensor/source signals in the form of brain connectivity as an efficient tool of neuroscience. In this review, we briefly report the challenges and limitations of conventional MI-BCIs. Brain connectivity analysis, particularly functional and effective, has been described as one of the most promising approaches for improving MI-BCI performance. An extensive literature on EEG-based MI brain connectivity analysis of healthy subjects is reviewed. We subsequently discuss the brain connectomes during left and right hand, feet, and tongue MI movements. Moreover, key components involved in brain connectivity analysis that considerably affect the results are explained. Finally, possible technical shortcomings that may have influenced the results in previous research are addressed and suggestions are provided.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
162 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献