Feature Extraction of Surface Electromyography Based on Improved Small-World Leaky Echo State Network

Author:

Xi Xugang1,Jiang Wenjun1,Miran Seyed M.2,Hua Xian3,Zhao Yun-Bo4,Yang Chen1,Luo Zhizeng1

Affiliation:

1. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

2. Biomedical Informatics Center, George Washington University, Washington, DC, 20052, U.S.A.

3. Jinhua People's Hospital, Jinhua, 321000, China

4. Department of Automation, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

Surface electromyography (sEMG) is an electrophysiological reflection of skeletal muscle contractile activity that can directly reflect neuromuscular activity. It has been a matter of research to investigate feature extraction methods of sEMG signals. In this letter, we propose a feature extraction method of sEMG signals based on the improved small-world leaky echo state network (ISWLESN). The reservoir of leaky echo state network (LESN) is connected by a random network. First, we improved the reservoir of the echo state network (ESN) by these networks and used edge-added probability to improve these networks. That idea enhances the adaptability of the reservoir, the generalization ability, and the stability of ESN. Then we obtained the output weight of the network through training and used it as features. We recorded the sEMG signals during different activities: falling, walking, sitting, squatting, going upstairs, and going downstairs. Afterward, we extracted corresponding features by ISWLESN and used principal component analysis for dimension reduction. At the end, scatter plot, the class separability index, and the Davies-Bouldin index were used to assess the performance of features. The results showed that the ISWLESN clustering performance was better than those of LESN and ESN. By support vector machine, it was also revealed that the performance of ISWLESN for classifying the activities was better than those of ESN and LESN.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3