Minimal Sign Representation of Boolean Functions: Algorithms and Exact Results for Low Dimensions

Author:

Sezener Can Eren1,Oztop Erhan1

Affiliation:

1. Ozyegin University, Istanbul, Turkey

Abstract

Boolean functions (BFs) are central in many fields of engineering and mathematics, such as cryptography, circuit design, and combinatorics. Moreover, they provide a simple framework for studying neural computation mechanisms of the brain. Many representation schemes for BFs exist to satisfy the needs of the domain they are used in. In neural computation, it is of interest to know how many input lines a neuron would need to represent a given BF. A common BF representation to study this is the so-called polynomial sign representation where [Formula: see text] and 1 are associated with true and false, respectively. The polynomial is treated as a real-valued function and evaluated at its parameters, and the sign of the polynomial is then taken as the function value. The number of input lines for the modeled neuron is exactly the number of terms in the polynomial. This letter investigates the minimum number of terms, that is, the minimum threshold density, that is sufficient to represent a given BF and more generally aims to find the maximum over this quantity for all BFs in a given dimension. With this work, for the first time exact results for four- and five-variable BFs are obtained, and strong bounds for six-variable BFs are derived. In addition, some connections between the sign representation framework and bent functions are derived, which are generally studied for their desirable cryptographic properties.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3