Winning the Lottery With Neural Connectivity Constraints: Faster Learning Across Cognitive Tasks With Spatially Constrained Sparse RNNs

Author:

Khona Mikail1,Chandra Sarthak2,Ma Joy J.3,Fiete Ila R.4

Affiliation:

1. Department of Physics, MIT, Cambridge, MA 02139, U.S.A. mikailkhona@gmail.com

2. Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, U.S.A. sarthakc@mit.edu

3. Department of Physics, MIT, Cambridge, MA 02139, U.S.A. joym@mit.edu

4. Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, U.S.A. fiete@mit.edu

Abstract

Abstract Recurrent neural networks (RNNs) are often used to model circuits in the brain and can solve a variety of difficult computational problems requiring memory, error correction, or selection (Hopfield, 1982; Maass et al., 2002; Maass, 2011). However, fully connected RNNs contrast structurally with their biological counterparts, which are extremely sparse (about 0.1%). Motivated by the neocortex, where neural connectivity is constrained by physical distance along cortical sheets and other synaptic wiring costs, we introduce locality masked RNNs (LM-RNNs) that use task-agnostic predetermined graphs with sparsity as low as 4%. We study LM-RNNs in a multitask learning setting relevant to cognitive systems neuroscience with a commonly used set of tasks, 20-Cog-tasks (Yang et al., 2019). We show through reductio ad absurdum that 20-Cog-tasks can be solved by a small pool of separated autapses that we can mechanistically analyze and understand. Thus, these tasks fall short of the goal of inducing complex recurrent dynamics and modular structure in RNNs. We next contribute a new cognitive multitask battery, Mod-Cog, consisting of up to 132 tasks that expands by about seven-fold the number of tasks and task complexity of 20-Cog-tasks. Importantly, while autapses can solve the simple 20-Cog-tasks, the expanded task set requires richer neural architectures and continuous attractor dynamics. On these tasks, we show that LM-RNNs with an optimal sparsity result in faster training and better data efficiency than fully connected networks.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference48 articles.

1. Network science;Börner;Annual Review of Science and Technology,2007

2. Elucidating cognitive processes using LSTMs;da Costa;Proceedings of the Conference on Cognitive Computational Neuroscience.,2019

3. Progressive skeletonization: Trimming more fat from a network at initialization.;de Jorge,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3