Statistical Computer Model Analysis of the Reciprocal and Recurrent Inhibitions of the Ia-EPSP in α-Motoneurons

Author:

Gradwohl G.1,Grossman Y.2

Affiliation:

1. Department of Physiology, Faculty of Health Sciences, and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and Unit of Biomedical Engineering, Department of Physics, Jerusalem College of Technology, Jerusalem, 91160, Israel

2. Department of Physiology, Faculty of Health Sciences, and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Abstract

We simulate the inhibition of Ia-glutamatergic excitatory postsynaptic potential (EPSP) by preceding it with glycinergic recurrent (REN) and reciprocal (REC) inhibitory postsynaptic potentials (IPSPs). The inhibition is evaluated in the presence of voltage-dependent conductances of sodium, delayed rectifier potassium, and slow potassium in five [Formula: see text]-motoneurons (MNs). We distribute the channels along the neuronal dendrites using, alternatively, a density function of exponential rise (ER), exponential decay (ED), or a step function (ST). We examine the change in EPSP amplitude, the rate of rise (RR), and the time integral (TI) due to inhibition. The results yield six major conclusions. First, the EPSP peak and the kinetics depending on the time interval are either amplified or depressed by the REC and REN shunting inhibitions. Second, the mean EPSP peak, its TI, and RR inhibition of ST, ER, and ED distributions turn out to be similar for analogous ranges of G. Third, for identical G, the large variations in the parameters’ values can be attributed to the sodium conductance step ([Formula: see text]) and the active dendritic area. We find that small [Formula: see text] on a few dendrites maintains the EPSP peak, its TI, and RR inhibition similar to the passive state, but high [Formula: see text] on many dendrites decrease the inhibition and sometimes generates even an excitatory effect. Fourth, the MN's input resistance does not alter the efficacy of EPSP inhibition. Fifth, the REC and REN inhibitions slightly change the EPSP peak and its RR. However, EPSP TI is depressed by the REN inhibition more than the REC inhibition. Finally, only an inhibitory effect shows up during the EPSP TI inhibition, while there are both inhibitory and excitatory impacts on the EPSP peak and its RR.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3