Surrogate Data Methods Based on a Shuffling of the Trials for Synchrony Detection: The Centering Issue

Author:

Albert Mélisande1,Bouret Yann2,Fromont Magalie3,Reynaud-Bouret Patricia1

Affiliation:

1. Université Côte d'Azur, CNRS, LJAD, France

2. Université Côte d'Azur, CNRS, LPMC, France

3. Université Bretagne Loire, CNRS, IRMAR, UMR 6625, 35043 Rennes Cedex, France

Abstract

We investigate several distribution-free dependence detection procedures, all based on a shuffling of the trials, from a statistical point of view. The mathematical justification of such procedures lies in the bootstrap principle and its approximation properties. In particular, we show that such a shuffling has mainly to be done on centered quantities—that is, quantities with zero mean under independence—to construct correct p-values, meaning that the corresponding tests control their false positive (FP) rate. Thanks to this study, we introduce a method, named permutation UE, which consists of a multiple testing procedure based on permutation of experimental trials and delayed coincidence count. Each involved single test of this procedure achieves the prescribed level, so that the corresponding multiple testing procedure controls the false discovery rate (FDR), and this with as few assumptions as possible on the underneath distribution, except independence and identical distribution across trials. The mathematical meaning of this assumption is discussed, and it is in particular argued that it does not mean what is commonly referred in neuroscience to as cross-trials stationarity. Some simulations show, moreover, that permutation UE outperforms the trial-shuffling of Pipa and Grün ( 2003 ) and the MTGAUE method of Tuleau-Malot et al. ( 2014 ) in terms of single levels and FDR, for a comparable amount of false negatives. Application to real data is also provided.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3