First Passage Time Memory Lifetimes for Simple, Multistate Synapses: Beyond the Eigenvector Requirement

Author:

Elliott Terry1

Affiliation:

1. Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.

Abstract

Models of associative memory with discrete-strength synapses are palimpsests, learning new memories by forgetting old ones. Memory lifetimes can be defined by the mean first passage time (MFPT) for a perceptron's activation to fall below firing threshold. By imposing the condition that the vector of possible strengths available to a synapse is a left eigenvector of the stochastic matrix governing transitions in strength, we previously derived results for MFPTs and first passage time (FPT) distributions in models with simple, multistate synapses. This condition permits jump moments to be computed via a 1-dimensional Fokker-Planck approach. Here, we study memory lifetimes in the absence of this condition. To do so, we must introduce additional variables, including the perceptron activation, that parameterize synaptic configurations, permitting Markovian dynamics in these variables to be formulated. FPT problems in these variables require solving multidimensional partial differential or integral equations. However, the FPT dynamics can be analytically well approximated by focusing on the slowest eigenmode in this higher-dimensional space. We may also obtain a much better approximation by restricting to the two dominant variables in this space, the restriction making numerical methods tractable. Analytical and numerical methods are in excellent agreement with simulation data, validating our methods. These methods prepare the ground for the study of FPT memory lifetimes with complex rather than simple, multistate synapses.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3