Hierarchical Control Using Networks Trained with Higher-Level Forward Models

Author:

Wayne Greg1,Abbott L. F.1

Affiliation:

1. Department of Neuroscience and Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032-2695, U.S.A.

Abstract

We propose and develop a hierarchical approach to network control of complex tasks. In this approach, a low-level controller directs the activity of a “plant,” the system that performs the task. However, the low-level controller may be able to solve only fairly simple problems involving the plant. To accomplish more complex tasks, we introduce a higher-level controller that controls the lower-level controller. We use this system to direct an articulated truck to a specified location through an environment filled with static or moving obstacles. The final system consists of networks that have memorized associations between the sensory data they receive and the commands they issue. These networks are trained on a set of optimal associations generated by minimizing cost functions. Cost function minimization requires predicting the consequences of sequences of commands, which is achieved by constructing forward models, including a model of the lower-level controller. The forward models and cost minimization are used only during training, allowing the trained networks to respond rapidly. In general, the hierarchical approach can be extended to larger numbers of levels, dividing complex tasks into more manageable subtasks. The optimization procedure and the construction of the forward models and controllers can be performed in similar ways at each level of the hierarchy, which allows the system to be modified to perform other tasks or to be extended for more complex tasks without retraining lower-levels.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3