Dynamics of Feature Categorization

Author:

Martí Daniel1,Rinzel John1

Affiliation:

1. Center for Neural Science, New York University, New York, NY 10003, U.S.A.

Abstract

In visual and auditory scenes, we are able to identify shared features among sensory objects and group them according to their similarity. This grouping is preattentive and fast and is thought of as an elementary form of categorization by which objects sharing similar features are clustered in some abstract perceptual space. It is unclear what neuronal mechanisms underlie this fast categorization. Here we propose a neuromechanistic model of fast feature categorization based on the framework of continuous attractor networks. The mechanism for category formation does not rely on learning and is based on biologically plausible assumptions, for example, the existence of populations of neurons tuned to feature values, feature-specific interactions, and subthreshold-evoked responses upon the presentation of single objects. When the network is presented with a sequence of stimuli characterized by some feature, the network sums the evoked responses and provides a running estimate of the distribution of features in the input stream. If the distribution of features is structured into different components or peaks (i.e., is multimodal), recurrent excitation amplifies the response of activated neurons, and categories are singled out as emerging localized patterns of elevated neuronal activity (bumps), centered at the centroid of each cluster. The emergence of bump states through sequential, subthreshold activation and the dependence on input statistics is a novel application of attractor networks. We show that the extraction and representation of multiple categories are facilitated by the rich attractor structure of the network, which can sustain multiple stable activity patterns for a robust range of connectivity parameters compatible with cortical physiology.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3