Manifold Gaussian Variational Bayes on the Precision Matrix

Author:

Magris Martin12,Shabani Mostafa3,Iosifidis Alexandros4

Affiliation:

1. Department of Electrical and Computer Engineering, Aarhus University, Aarhus 8200, Denmark

2. Instituto Tecnológico Autónomo de México (ITAM), 01080 Ciudad de México, México magris@ece.au.dk

3. Department of Electrical and Computer Engineering, Aarhus University, Aarhus 8200, Denmark mshabani@ece.au.dk

4. Department of Electrical and Computer Engineering, Aarhus University, Aarhus 8200, Denmark ai@ece.au.dk

Abstract

Abstract We propose an optimization algorithm for variational inference (VI) in complex models. Our approach relies on natural gradient updates where the variational space is a Riemann manifold. We develop an efficient algorithm for gaussian variational inference whose updates satisfy the positive definite constraint on the variational covariance matrix. Our manifold gaussian variational Bayes on the precision matrix (MGVBP) solution provides simple update rules, is straightforward to implement, and the use of the precision matrix parameterization has a significant computational advantage. Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models. Over five data sets, we empirically validate our feasible approach on different statistical and econometric models, discussing its performance with respect to baseline methods.

Publisher

MIT Press

Reference55 articles.

1. Optimization Algorithms on Matrix Manifolds

2. A novel hybrid RBF neural networks model as a forecaster;Akbilgic;Statistics and Computing,2014

3. On the Bures–Wasserstein distance between positive definite matrices;Bhatia;Expositiones Mathematicae,2019

4. Variational inference: A review for statisticians;Blei;Journal of the American Statistical Association,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3