Microdomain [Ca2+] Fluctuations Alter Temporal Dynamics in Models of Ca2+-Dependent Signaling Cascades and Synaptic Vesicle Release

Author:

Weinberg Seth H.1

Affiliation:

1. Virginia Modeling, Analysis and Simulation Center, Old Dominion University, Suffolk, Virginia 23435, U.S.A.

Abstract

Ca2+-dependent signaling is often localized in spatially restricted microdomains and may involve only 1 to 100 Ca2+ ions. Fluctuations in the microdomain Ca2+ concentration (Ca2+) can arise from a wide range of elementary processes, including diffusion, Ca2+ influx, and association/dissociation with Ca2+ binding proteins or buffers. However, it is unclear to what extent these fluctuations alter Ca2+-dependent signaling. We construct Markov models of a general Ca2+-dependent signaling cascade and Ca2+-triggered synaptic vesicle release. We compare the hitting (release) time distribution and statistics for models that account for [Ca2+] fluctuations with the corresponding models that neglect these fluctuations. In general, when Ca2+ fluctuations are much faster than the characteristic time for the signaling event, the hitting time distributions and statistics for the models with and without Ca2+ fluctuation are similar. However, when the timescale of Ca2+ fluctuations is on the same order as the signaling cascade or slower, the hitting time mean and variability are typically increased, in particular when the average number of microdomain Ca2+ ions is small, a consequence of a long-tailed hitting time distribution. In a model of Ca2+-triggered synaptic vesicle release, we demonstrate the conditions for which [Ca2+] fluctuations do and do not alter the distribution, mean, and variability of release timing. We find that both the release time mean and variability can be increased, demonstrating that Ca2+ fluctuations are an important aspect of microdomain Ca2+ signaling and further suggesting that Ca2+ fluctuations in the presynaptic terminal may contribute to variability in synaptic vesicle release and thus variability in neuronal spiking.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3