Bayesian Optimization for Cascade-Type Multistage Processes

Author:

Kusakawa Shunya1,Takeno Shion2,Inatsu Yu3,Kutsukake Kentaro45,Iwazaki Shogo6,Nakano Takashi7,Ujihara Toru8,Karasuyama Masayuki9,Takeuchi Ichiro410

Affiliation:

1. Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan kusakawa.s.mllab.nit@gmail.com

2. Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan takeno.s.mllab.nit@gmail.com

3. Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan inatsu.yu@nitech.ac.jp

4. RIKEN Center for Advanced Intelligent Project, Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan

5. Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan kentaro.kutsukake@riken.jp

6. Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan iwazaki.s.mllab.nit@gmail.com

7. Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan nakano.t@unno.material.nagoya-u.ac.jp

8. Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan ujihara@nagoya-u.jp

9. Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan karasuyama@nitech.ac.jp

10. Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan ichiro.takeuchi@mae.nagoya-u.ac.jp

Abstract

Abstract Complex processes in science and engineering are often formulated as multistage decision-making problems. In this letter, we consider a cascade process, a type of multistage decision-making process. This is a multistage process in which the output of one stage is used as an input for the subsequent stage. When the cost of each stage is expensive, it is difficult to search for the optimal controllable parameters for each stage exhaustively. To address this problem, we formulate the optimization of the cascade process as an extension of the Bayesian optimization framework and propose two types of acquisition functions based on credible intervals and expected improvement. We investigate the theoretical properties of the proposed acquisition functions and demonstrate their effectiveness through numerical experiments. In addition, we consider suspension setting, an extension in which we are allowed to suspend the cascade process at the middle of the multistage decision-making process that often arises in practical problems. We apply the proposed method in a test problem involving a solar cell simulator, the motivation for this study.

Publisher

MIT Press

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference38 articles.

1. Bayesian optimization under uncertainty;Beland;NIPS BayesOpt 2017 Workshop,2017

2. Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization;Couckuyt;Journal of Global Optimization,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3